Fully solution-processed zinc oxide MIS capacitors by ultrasonic spray pyrolysis in air ambient

نویسندگان

  • Miguel A. Dominguez
  • Abdu Orduña-Diaz
چکیده

In this work, the fabrication and characterization of fully solution-processed zinc oxide metal–insulator–semiconductor (MIS) capacitors by ultrasonic spray pyrolysis (USP) are presented. Fluorine tin oxide by USP was used as transparent electrode, while spin-on glass by spin-coating was used as dielectric and zinc oxide by USP was used as active layer. Also, the zinc oxide film was characterized using photoluminescence spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The MIS capacitors were fabricated over glass slides and were highly transparent in the visible range, which makes their use feasible in transparent electronics. Employing capacitance–voltage and current–voltage measurements, the MIS capacitors were characterized. © 2017 Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Temperature Preparation of Tungsten Oxide Anode Buffer Layer via Ultrasonic Spray Pyrolysis Method for Large-Area Organic Solar Cells

Tungsten oxide (WO₃) is prepared by a low-temperature ultrasonic spray pyrolysis method in air atmosphere, and it is used as an anode buffer layer (ABL) for organic solar cells (OSCs). The properties of the WO₃ transition metal oxide material as well as the mechanism of ultrasonic spray pyrolysis processes are investigated. The results show that the ultrasonic spray pyrolysized WO₃ ABL exhibits...

متن کامل

Synthesis of ZnO Nanoparticles by Spray Pyrolysis Method

Zinc oxide (ZnO) nanoparticles were synthesized by spray pyrolysis method using an aqueous solution of zinc acetate at various concentrations from 5 to 25 wt%. The decomposition of precursor solutions was carried out at 800, 1000 and 1200ºC under different atomizing pressures. The crystal structure and morphology of synthesized nanoparticles were characterized by X-Ray Diffraction ...

متن کامل

Optoelectronic characteristics of YAG phosphor-incorporated ZnO films deposited by ultrasonic spray pyrolysis

This work presents a novel white light device. An yttrium aluminum garnet (YAG) phosphor-incorporated zinc oxide (ZnO) film is deposited on a slide glass substrate by ultrasonic spray pyrolysis. A nanoflower consisting of a hexagonal nanopetal is formed on the surfaces of the samples, and the sizes of the nanopetal are approximately 200 to 700 nm. Additionally, the nanopetal becomes blunted wit...

متن کامل

Influence of N2- and Ar-ambient annealing on the physical properties of SnO2: Co transparent conducting films prepared by spray pyrolysis technique

In this contribution, the Co doped SnO2 transparent semi-conducting films are prepared by spray pyrolysis technique and the influence of N2-and Ar-ambient annealing on their structural, electrical and optical properties are studied. The SnO2:Co thin films were deposited on the glass substrate at substrate temperature of 480 ˚C using an aqueous-ethanol solution consisting of tin and cobalt chlor...

متن کامل

Evolution of Zinc Oxide Nanostructures Grown on Graphene by Ultrasonic Spray Pyrolysis and Its Statistical Growth Modelling

The evolution of zinc oxide nanostructures grown on graphene by alcohol-assisted ultrasonic spray pyrolysis was investigated. The evolution of structures is strongly depended on pyrolysis parameters, i.e., precursor molarity, precursor flow rate, precursor injection/deposition time, and substrate temperature. Field-effect scanning electron microscope analysis, energy dispersive X-ray spectrosco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017